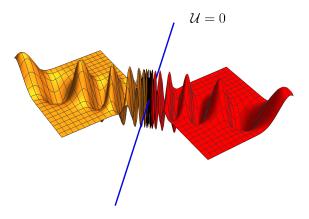
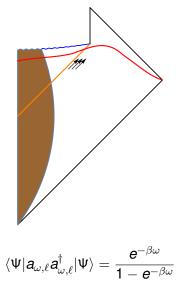

Summary


April 15, 2021

The Information Paradox


The information paradox is a web of interconnected puzzles that teach us lessons about quantum gravity.

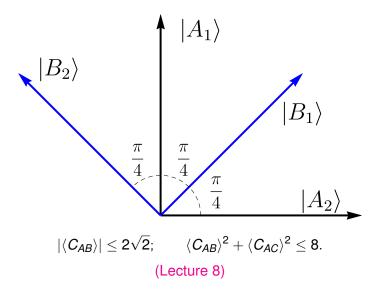
Entangled modes across a null surface

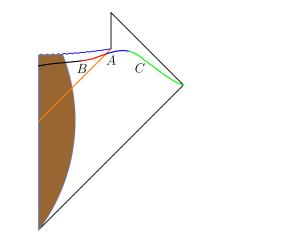
$$(\mathfrak{a} - e^{-\pi\omega_0} \widetilde{\mathfrak{a}}^{\dagger}) |\Psi\rangle = 0, \qquad (\mathfrak{a}^{\dagger} - e^{\pi\omega_0} \widetilde{\mathfrak{a}}) |\Psi\rangle = 0.$$

(Lectures 1 - 2)

Hawking radiation and Hawking's original paradox

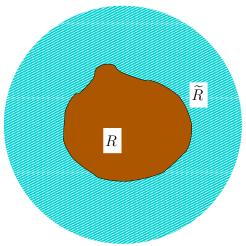
This leads to a robust derivation of Hawking radiation and Hawking's original paradox. (Lectures 3-5)


Thermalization

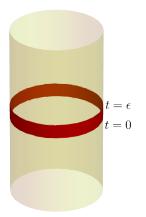

$$\int d\mu_{\Psi} \big(\operatorname{Tr}(\rho_{E} \boldsymbol{P}) - \langle \Psi | \boldsymbol{P} | \Psi \rangle \big)^{2} \leq \frac{1}{(W+1)}$$

Pure states are exponentially close to mixed states, which resolves the simplest version of the paradox. (Lectures 6 - 7)

Results from quantum information

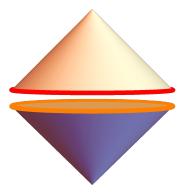

A monogamy paradox

$$\langle C_{AB} \rangle^2 + \langle C_{AC} \rangle^2 = 8 + \frac{4}{(1 + e^{-\beta\omega})^2} \left(1 + 6e^{-\beta\omega} + e^{-2\beta\omega} \right)?$$


This was used to argue for the presence of structure at the black hole horizon. (Lectures 9-10)

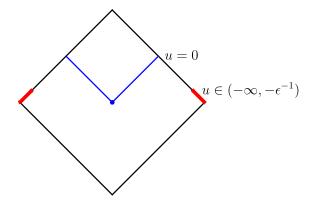
Holography of information

In a theory of quantum gravity, information available on a Cauchy slice is also available near the boundary of the slice. (Lecture 10)


Holography of information in AdS

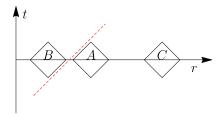
$$A = \sum_{n,m} c_{nm} X_n P_0 X_m^{\dagger}$$

In asymptotically AdS spacetimes, all information is available in a time band of extent ϵ on the boundary. (Lectures 11–12)


Holography of information in flat space

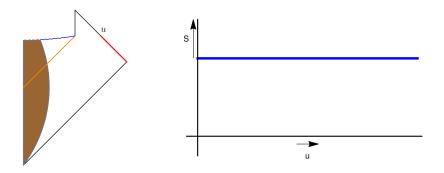
$$A=\sum c(n,m,s,s')X_nT_{\{s\},\{s'\}}X_m^{\dagger}.$$

In 4d asymptotically flat spacetimes, information about massless particles is available near \mathcal{I}^+_- . (Lectures 13–14)

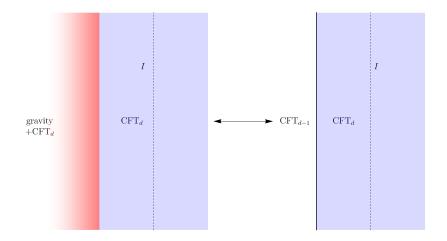

Low energy tests of holography of information

$$\langle f|M(-\infty)O(u,\Omega')|f
angle=G\lambda\int_{0}^{1}rac{f(x,\Omega')}{(x-u-i\epsilon^{+})}dx$$

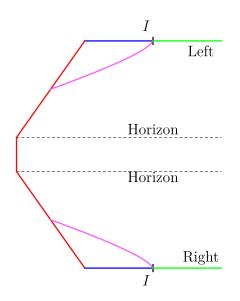
The holography of information is visible within low-energy physics. (Lectures 13, 15)


A perspective on black hole information

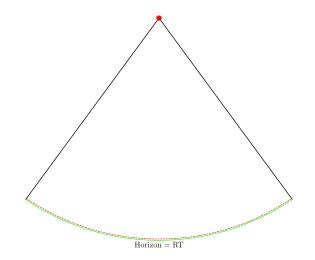
$$\langle 0|C_{AB}|0
angle^2+\langle 0|C_{AC}|0
angle^2>8?$$


Information about the black hole interior is always available outside. Ignoring this redundancy can be shown to lead to a monogamy paradox. (Lecture 15)

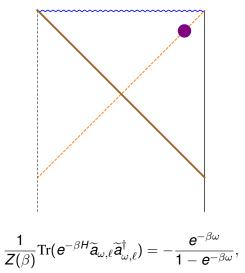
von Neumann entropy at \mathcal{I}^+


The fine-grained von Neumann entropy of $(-\infty, u)$ of \mathcal{I}^+ in gravity is independent of u! (Lecture 16)

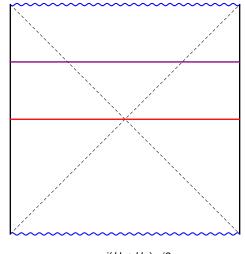
AdS black holes and a nongravitational bath


A naive holographic computation of the entropy of the bath would suggest an ever-increasing entropy. (Lecture 18)

Islands

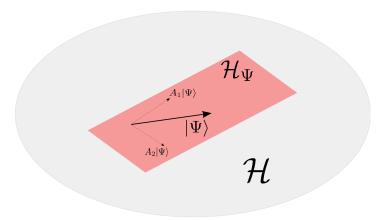

The paradox is resolved by a phase transition between RT surfaces. (Lecture 19)

Gravity in the bath


Introducing gravity in the bath leads to a constant Page curve, as in flat space. (Lecture 20)

Large AdS black holes

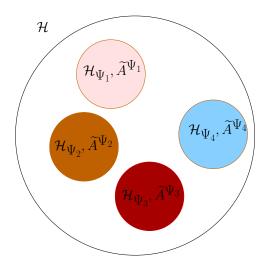
Large AdS black holes dominate the microcanonical ensemble. This leads to new paradoxes. (Lecture 21)


The eternal black hole

$$|\Psi_{ au}
angle=e^{-\imath(H_L+H_R) au/2}|\Psi_{ ext{tfd}}
angle.$$

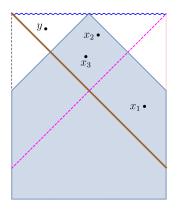
These paradoxes can also be extended to the eternal black hole. (Lecture 22)

Interior reconstruction



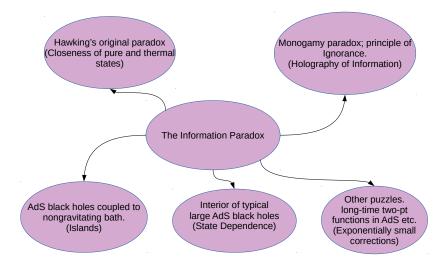
Mirror operators reconstruct the interior about a smooth microstate

$$\widetilde{A}_n A_m |\Psi
angle = A_m e^{-rac{eta H}{2}} A_n^\dagger e^{rac{eta H}{2}} |\Psi
angle.$$


(Lecture 23)

State dependence

If the mirrors are allowed to be state dependent, even typical states are smooth. (Lecture 24)


Consistency of state dependence

$$\langle \Psi | U^{\dagger} A U | \Psi
angle - \langle \Psi | A | \Psi
angle \Big| \leq 2 \sqrt{\beta \delta E} \sigma$$

State dependence suggests black holes are unusually sensitive to low-energy excitations. Refining the notion of "simple" observables removes this anomaly. (Lecture 25)

The Information Paradox

