in April 202'

Lecture 25 More on state dependence

Last time we introduced the notion ast time we introduced the

The idea was that the mirror operators he lared was that right movers" vehind the horizon might depend on the microstates

More precisely in the little Hilbert Space in the little thilbest
Hu = span { Ai (4)}

otw acts linearly and like an ordinary operator

But we might need a different operator about a different microstate.

Resolving paradoxes IF we follow this idea, we see that it resolves all paradoxes associated For instance, we clearly have. $2419.84 + 147 = 1$ But we cannot use $\begin{array}{rcl}\n\text{tr}\left(e^{-\beta H}\partial_{w}\partial_{w}^{+}\right) & = & \leq & \angle E \backslash e^{-\beta H}\partial_{w}\partial_{w}^{+} \\
\neq & \leq & \angle E \backslash \partial_{w}^{+}e^{-\beta H}\partial_{w}^{+}\backslash E \rangle\n\end{array}$

Because the operator and depends on the

Note that the trace is not directly
observable

so this dependence is not directly

The same resolution works for the
paradox with the infalling number

Clearly N_a $\langle \psi \rangle = 0$ For an equilibrium state. But it is also true that $L\cap\backslash N_{\alpha}\backslash\mathbb{D}\rangle\neq0$ where Inf is a Schwarzschild number eigenstate . Since Na is state dependent $E < E/N_{d} |E\rangle$ + $E < N/N_{d} |N\rangle$.

Finally let us consider the paradox with the eternal liack hole.

The paradox was that we were unable to find operators aw that had the right correlators in States

where we had the complement of the complem can simply use the construction of the mirror operators.

But there is another approach that yields insight into the origins of state dependence.

Recall that if we use the modes of the left CFT aw, then we do have LU_{EFA} aw, L aw 14FFa) $=\frac{e^{-\sqrt{3}w/2}}{e^{-\sqrt{3}w/2}}$ The problem is roulem is
< Y_{EEA} e CHL+He)T/2 awe (CH+He)T/2 e^{-iwt}
= e^{-iwt}
= $e^{-\beta w/z}$

t Py ve the projector on the little Let Hilbert space constructed about e^{-i(HL+He)T12} her Out
On= [C] dr dw e Wr
Out
Out dw e Pz E per has the right correlators in the
thermofield double state and nearby
time-shifted states. The recessive is designed using C is the specific heat Where

The measure is defined so that the projector acts like a delta-function $\widetilde{d_{w}}A_{i}/\psi_{T}=\underline{d_{w_{1}}e^{i\omega_{1}}\psi_{T}},$ The additional factor of e^{iwt} is <u>Why is this state dependent?</u> Note the cotoff, Ocut O_{Co} $\widetilde{a}_{w} = \sqrt{\frac{c}{\pi \beta^{2}}} \int_{-\infty}^{\infty} dx \frac{d_{w}}{dw} e^{i w^{2}} P_{z}$

This is necessary because if we try and take a cole by the we run into trouble

First note $\langle \downarrow_{L}(A) P_{Z} | \downarrow_{L}(A) \sim O(e^{-S})$)

since we are integrating over an infinite range integrating over an means that even

 α letters

receives a contribution from large ⁸ and so even

CVLFa) aw aw 14 LFd)

ceases to have the correct value if

 $\begin{array}{ccc} \circ & & \circ & \\ \circ & & \circ & \\ \end{array}$

The picture is as follows. We are considering
a 1-parameter family of states parameter family of states To Cut To Totorut

- Ocup Que

we can use a single operator for an ise a single operator for an
exponentially long interval Imarked in red] But eventually, we need to switch to But eventually, we need to switch to
a new operator that again works for
a long interval Imarked in green? .

We see that the paradoxes for the eternal liarde hole do not arise
eternal liarde hole do not arise since, to obtain the paradox, we since, to outain the paradox, we
assumed that α_{w} was the same aperator on Iterator and $e^{\frac{1}{2}(H_{L}+H_{Q})+|2}$

For arbitrarily long ^T.

This is not true if α_{w} is state dependent.

Consistency of state-dependent maps

Although state dependence is very effective although state dependence is very extrective
in resolving puzzles, it must be carefully

LExplain significance S

One such puzzle was pointed out in arXiv : 1506 . ⁰¹³³⁷

we will describe a generalisation and reformulation from 1604.03095

The main physical point is that if A is a state-independent observable. then one can derive some constraints her one can derive some constrait
on how much it changes under a low energy excitation

The result is as follows. Consider a he result is as follows. E and typical state at energy 1= and
a unitary operator, U that increases the energy by SE

Unitaries must increase the energy of typical States since they do not annihilate any state so they have to map any state so they
the space at energy E to the slightly larger space at energy E + SE]
E + SE]

 H HE +SE

Then the result is that if A is some Hermitian observable then $SR = 12410⁺ AU(4) - 24(A/4) 22566$ when BSEL<1 and

 $\frac{1}{\sqrt{3}}\sqrt{4A/\psi^2 - 1} \sqrt{4A/\psi^2 + 1} \sqrt$

Sketch of derivation AUF $H \subset$ Let Hu_r he the image of HE in HETSE Hu_E has dimension es HETSE has dimension est BSE so a vector in HE+8E can be $w + b = 0s$
 $w + b = 0s$
 $w^2 = 14s$
 $w^3 = 14s$
 $w^2 = 14s$
 $w^3 = 14s$
 $w^2 = 14s$

since the Lemperature associated with $SP = 2BSE = -B^2 \frac{SE}{S} = O(\frac{1}{S})$

SP = 2B SE = -B $\frac{SE}{S} = O(\frac{1}{S})$ $SO \qquad \qquad \angle \psi'(A) \psi' \rangle = \angle \psi(B) \psi \rangle_{\text{Eypid}} \qquad \qquad \text{Eypidal stage}}$ $\langle \psi_E | A | \psi_E \rangle = \langle \psi | U^+ A | U | \psi \rangle$ Also so from decomposition of $\langle \psi' \rangle$ Y LUIAIUS - LUIUTAUIUS - OCTBSE) Some more work gields the precise lound.

The idea of the puzzle is as follows consider the Schwarzschild number operator $N_w = a_w^+ a_w$ This operator has almost o energy but not quite vecause aw is a slightly smeared mode. Now consider IO Nw $U = e$ This operator has very low energy because Nw almost commutes with H.

But consider its effect on the comelator $2412 w Q_w Q_w / 47 = e^{-Rwl2}$ $Since$ + $Ud_wU = e^{-i\theta} a_w iU^{\dagger} \tilde{a}_w U = \tilde{a}_w$ we have 2410^{+} du du 0 V = $e^{-i\theta}$ e-Bwl2 so the correlator is altered by a large

There is a partial resolution to this problem outlined in 1604.03095

so far we have described simple operators as polynomials in the modes aw, α_w s
etc.

But physically how does one perturb a state 4y 100 and make an
a state 4y 1 and make an observation.

1) We deform the boundary Hamiltonian vue actorin Lne vouvaary nai

 $H(t) = |A \times J(t)Q(t)|$

Note the condition on the operator veing"local" in time .

This modifies the state at Lime t or the loundary as It is important that QCL) le a simple operator. Otherwise if alt) is arbitrary any unitary eg we can write. $\phiCF) \phiCF - I) \phi(F+I^3)$ OCESE WT, QCESE (HT, -iHT2 QCESE) so it is an operator at time t. But this is not a simple operator

2) We have considered arbitrary correlators of "simple" operators.

But not all are easily observable . For instance

 e^{x} \times I [←] Collapsing matter creates b.h. horizon

For instance consider the points x , and x_2 marked above.

It appears that L_{ψ} and L_{ψ} and L_{ψ} is a good observable. But it cannot be observed by a simple bulk opserver because even if opservers at x, and x₂ signal each other at
at x, and x₂ signal each other at the speed of light, those light signals cannot meet vefore the singularity " A set of points is in a causal patch if set of points is in a causal patch
if future directed null Itimelike geodesics
from the points can meet at a common point"

1h figure ^x, ,Xz are in a causal patch .

so we can further restrict wilk observables to $24 \times 66x$) $80x$ where X; are in a single causal patch . [Note : Entire discussion is in the context of QFT in curved spacetime, where we neglect " holography of information" and other aspects of subtlety with locality in gravity. Appropriate perspective for leading order field correlations. $\sum_{i=1}^{N-1}$

Then it is a very remarkable property of Ads correlators that for $U = \frac{1}{\sqrt{2\pi}} \int_{0}^{1} \frac{1}{\sqrt{2\pi}} \sqrt{2\pi} \sqrt{2\pi} \left(\frac{1}{2} \right)$ $d\sim d$ $A = \phi(x_1) - \phi(x_2)$ where x; are in the causal patch
that ends at the on the boundary We do have $24707 A U49 - 241A49 = \sqrt{BCB}6$

I don't know of any simple way to i dor't know of any simple way to From an analysis of position-space Ads correlators. What this means is that when wat this means is that when
we further restrict simple observable we further restrict simple overvalle observables can be measured and which perturbations can be generated dynamically, the "anomalous sensitivity of black holes to low-energy excitations" goes away!

But this is not a complete resolution Consider the original paradox framed in OVW $\frac{w\wedge ev}{\wedge w}=\frac{dw}{\wedge w}$ in position space, we would write Nw = 1 Socke (OCK)e iwt \rightarrow C-number

To act with this operator at t -^o requires operators "from the future"

so the resolution does not apply to deformations of this kind. We
deformations of this kind. We
declare that these are unobservable Jeclare that these