In this lecture, we discussed the transformation between the Minkowski and the Rindler vacua. We considered linear combinations of the Rindler modes that had the property that they could be written purely in terms of positive frequency Minkowski modes. Therefore, the Minkowski vacuum must be annihilated by these modes. By solving this equation, we established a very important result --- the Minkowski vacuum looks like the thermofield doubled state from the point of view of a Rindler observer. We also discussed another interesting aspect of the Rindler quantization --- the Rindler modes in the "forward" region are a linear combination of the right movers from the left wedge, and the left movers from the right wedge.